

Conscious Sedation: How to Manage Children in Dental Practice

Marie Therese Hosey

Part 1: Let's meet the children

Things that frighten children

- the unknown
- sight of the anaesthetic syringe
- sight, sound and sensation of the drill
- mutilation
- choking
- perceived expectation of ill-treatment / trauma
- strangers

Dental Anxiety in Children

- As many as 16% of school-age children are afraid of the dentist and consequently avoid attending
- Children display their anxiety differently from adults, they are more irrational and less restrained
- There is wide variation between individual children, this may be is largely genetically determined
- Some children who refuse dental treatment have been shown to generally have difficulty adapting to change

Age and Aetiology of Dental Anxiety

Townend E, Dimigen G, Fung D. (2000) A clinical study of child dental anxiety. *Behaviour Research and Therapy*, **38**, 31-46.

Locker D, Liddell A, Dempster L, Shapiro D. Age of onset of dental anxiety. *Journal of Dental Research* 1999; **78**:[3], 790-796.

A Crash Course in Child

Anatomy

- Large head, short neck, large tongue
- Narrow nasal passages
- Are obligate nasal breathers at birth
- High anterior larynx
- Larynx narrowest at cricoid cartilage

Respiratory physiology

- Low functional residual capacity (FRC)
- Closing volume is greater than FRC up to 5 years of age, leading to increased ventilation/ perfusion (V/Q) mismatch
- Horizontal ribs, weak intercostals muscles leading to relatively fixed tidal volume
 - Oxygen consumption is high 6ml/ kg/min compared to 3ml/kg/min in adults

Temperature Regulation

- High surface area to body weight ratio
- Large head surface area and heat loss
- Require a higher temperature for a thermoneutral environment
- Immature responses to

Nervous System

- Increased incidence of periodic breathing and apnoeas
- Ventilatory response to CO2 is more readily depressed by opiates
- Immature neuromuscular junction leads to increased sensitivity to muscle relaxants

These differences result in hypoxia Occurring more readily in children

So what might be causing this?

So, what will you do for these children?

Part 2: Child Management

The role of the dentist

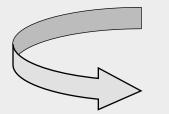
Reducing child anxiety

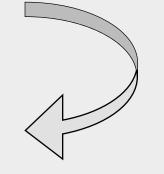
- Preventing pain
- Being friendly & establish trust
- Working quickly
- Having a calm manner
- Giving moral support
- Empathy
 (Corah et al 1988)

Behavioural Management Techniques

- positive reinforcement
- tell show do
- acclimatisation
- desensitisation
- voice control
- distraction
- role modelling

Building a Treatment Plan

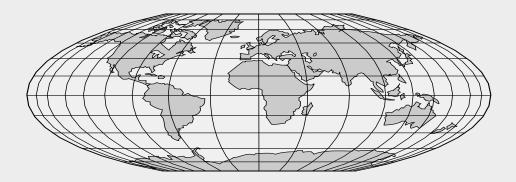


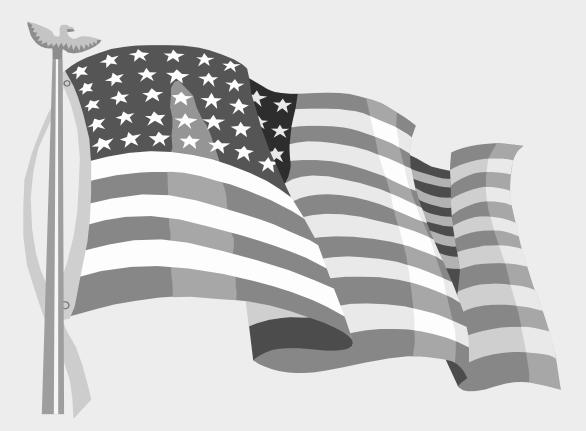


IHS

GA?

Part 3: Paediatric Dental Conscious


Conscious sedation:


• Drug or *drugs*

- Awake and communicating at all times
- IV not generally recommended in children
- Dentist responsible for compliance of the anaesthetist?

Paediatric Dental Sedation around the World

conscious sedation---DEEP SEDATION---general anaesthesia

poly pharmacy is commonly advocated in specialist & hospital practice

There is lots of

literature....

- •40 children, 24-60 months
- •Half chloral hydrate & hydroxyzine
- •Half also given pethidine
- •All had 50% N₂O
- •All papoosed
- •Used the Houpt scale

Comparison of a chloral hydrate/hydrox without meperidine in the sedation of p

Torona L. Pourman, 1996. Fronta H. Partington, 2006 Ant. Justice T. Monatirea, 2006. vol. Matt

Absolut

"modurtice

And the same of concentration of the same of the same

College Westman or continuents with inducersonia www.conid.mine.com.ming.td a '1963 Survey of Physics.com The state of the s

- 'Quiet' and recovery rooms
- training requirements
- Location
- Monitoring
 - BP,
 - Pulse oximeter
 - Pre-cordial stethoscope

Cote et al. Adverse sedation events in pediatrics: a critical incident analysis of contributing factors. Pediatrics 2000 105: 805-814

Crash course in child anatomy and physiology

These differences result in hypoxia occurring more readily in children

Complications associated with paediatric dental sedation

MOST COMMON

- Nausea & vomiting
- Hypoxia
- Unintentional loss of consciousness

These are usually related to extreme young age of the child, polypharmacy or use of multiple drugs.

Complications associated with paediatric dental sedation

ALSO

- aggression
- disinhibition
- hallucinations
 - mainly with ketamine and midazolam/ketamine Roelofse 1996(a&b); 1998

Cote et al. Adverse sedation events in pediatrics: a critical incident analysis of contributing factors. Pediatrics 2000 105: 805-814

- Review of adverse drug events reported for paediatric sedation by 4 reviewers cases where all agreed selected for this report
- 95 incidents: 51 deaths; 32 were for paediatric dental patients, 3 died receiving sedation from a 'pedodontist'
- more cardiac arrests in non-hospital settings
- inadequate resuscitation rated as the determinant of adverse outcome occurred most frequently in non-hospital settings
- death and permanent injury more common in non-hospital settings
- pulse oximetry was related to successful outcome
- Poor outcome attributed to lack of skill in assessment of the problem and failure to resuscitate the patient

Guidelines

European Academy of Paediatric Dentistry

www.eapd.gr/Guidelines.index.htm

UK Dental Sedation Teachers Group

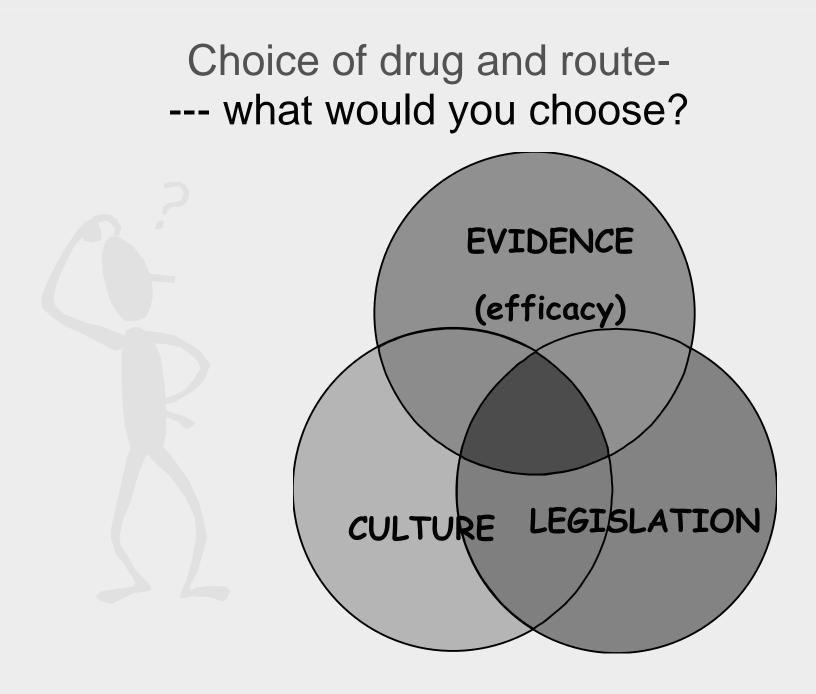
www.dstg.co.uk

British Society of Paediatric Dentistry

www.bspd.co.uk

Scottish Dental Clinical Effectiveness Programme

www.scottishdental.org/cep


Choosing the sedative drug

the choice is endless....

THE REPORT OF A THE PART OF A internal description in a and it for earling the early, it gas and a second second the sping minutes. and the lot of some Advantaging PA Includes Manual Property of the local division of the local divisi 5-11 - 3-1 marks #1 Course 1 of area Little TORNAL PROPERTY AND State of the second 11.000.00 MARTINE INCOME. 1.0 apply 10 in 18. the designment of the set of 0.0 - 0.0 aple 10 to 30 0.0 aple 17 ACCESSION NAMES il and a start 10.455 (And and Associate (Springers) (19) 1.1 - 1.4 ap/14 M S.J. egiles 16 States - Laborer 2.001 - 1.002 mg/kg 70.000 m 707 and the second second And marks Chill And allow in comparison 2 man. 12 in the set Name and A 5.0 C L R ag/lig 10. A. Loging 16 5.47 wights to \$1.7 mg intent the second second DEPOSITOR NO. And aging to did agreed Care to the second second 1 Test 1 L . J 10. to obvious the prove states of agine, shake he had 4 11 15 582

Routes of administration

- oral
- intramuscular
- intravenous
- rectal
- submucosal
- inhalation
- intranasal?

Choosing the sedative drug

the role of research

Research

Double blind randomised placebo controlled trials

Meta analysis

Non randomised controlled trials

Clinical cohort studies

Clinical cases

Conference & expert consensus

Cochrane

Matharu L, Ashley PF. Sedation of anxious children undergoing dental treatment. Cochrane database of systematic reviews, 2006, Issue 1, Art. No. : CD 003877. DOI: 10.1002/14651858. CD063877

www.mtw.interscience.wiley.com/cochrane/cly ev/articles/CD003877/pdf_fs.html

- Method of randomisation unclear
- Inappropriate statistical tests
- Cross-over type studies should consider the carry-over effect
- Only 32% of studies reported baseline anxiety- even fewer reported anxiety at the end
- Little information regarding the actual treatment
- Repeatability not mentioned, especially when there was multiple operators or assessors
- Interpretation of outcome data relating to behaviour was difficult
- Over 50% of studies used the Houpt scale to record behaviour but in different ways and sometimes the subjects were papoosed

NICE: Sedation for children and young people

- A clinical guideline offering evidence-based advice
- Not just about dentistry
- 0 to 18 years

http:/guidance.nice.org.uk/CG112

NICE definitions

Minimal sedation

• A drug-induced state during which patients are awake and calm and respond normally to verbal commands. Although cognitive function and coordination may be impaired, ventilatory and cardiovascular functions are unaffected.

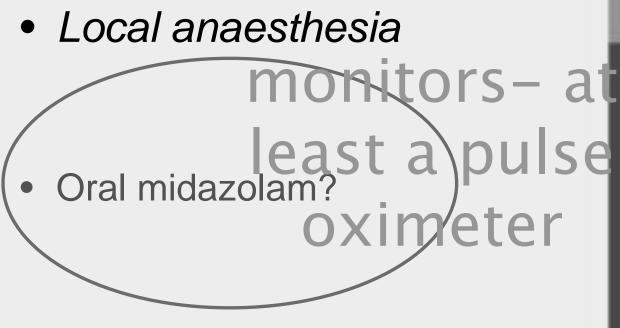
Moderate Sedation

• Drug-induced depression of consciousness during which patients are sleepy but respond purposefully to verbal commands (known as conscious sedation in dentistry) or light tactile stimulation. No interventions are required to maintain a patent airway. Spontaneous ventillation is adequate. Cardiovascular function is usually maintained.

Conscious sedation

 Drug induced depression of consciousness, similar to moderate sedation, except that verbal contact is always maintained. This term is used commonly in dentistry.

Deep sedation


 Drug induced depression of consciousness during which patients are asleep and cannot be easily aroused but do respond purposefully to repeated or painful stimulation. The ability to maintain ventilatory function independantly may be impaired. Patients may require assistance to maintain a patent airway. Spontaneous ventilation may be inadequate. Cardiovascular function is usually maintained

- Children and young people undergoing sedation and their parents and carers should have the opportunity to make informed decisions about their care and treatment....
- Treatment and care and information should be culturally appropriate
- Pre-sedation assessment and documentation
- Sets levels of expertise in sedation techniques in drug and life support skills
- Recommends psychological preparation

Fasting and Life support recommendations

Minimal	Moderate	Conscious	Deep
BLS	ILS	ILS	ALS
No fasting	No fasting if verbal contact is maintained	IS= no fasting	Apply 2-4-6 rule

inhalation sedation

Midazolam

- administered orally, intramuscularly, rectally and intravenously
- high affinity with benzodiaziapine receptor
- high lipiphilicity + high metabolic clearance mean rapid onset and recovery
- reversed by Flumazenil (Anexate)
- more unpredictable in children
- not licensed for use in children

need monitors and a room for recovery

Midazolam: Adverse effects

- Respiratory <u>drive</u> decreases/apnea !!!
- Increased likelihood of hiccups
- Increased interactive drug effects
- Paradoxical effects (aggressive, crying, struggling)
- Drug Interactions:
 - more sedative effect with erythromycin, ketoconazole, or consumption of grape-fruit juice.
 - less sedative effect with tegretol or phenytoin

KE Wilson, RR Welbury, NM Girdler.

A randomised, controlled, crossover trial of oral midazolam and nitrous oxide for paediatric dental sedation. Anaesthesia 2002, 57: 860-867.

- 46 children, 10 16 years
- Premolar (ortho) extractions
- either 0.5 mg/kg ORAL midazolam or IHS
- BP, heart rate and SO₂ comparable
- Midazolam group took longer to achieve sedation
 [20 (5-65) versus 5 (5-10) mins] p<001]
- Treatment duration was similar
- 74% prefered to have midazolam again

THREE ROUTES COMPARED: Buccal, IV, Oral

Modality	Buccal Midazolam	IV	Oral Midazolam	
		Midazolam		
No subjects completing trial	36	40	46	42
	[0.2 mg/kg]	[0.5 mg min- to 5mg	[0.5mg/kg]	[0.3mg/
Age mean (range)	12.9 yrs (10-16 yrs)	a]	12.5 yrs	kg)
		13.2 yrs (12-16 yrs)	(10-16 yrs)	7.4 yrs ((5-10 yrs)
No withdrawing	9	2	2	7
Vital signs	Within normal clinical limits	Within normal clinical limits	Within normal clinical limits	
Median time to peak sedation level	14 minutes	8 minutes	20 minutes	15 minute s
Mean total visit time	65 minutes	69 minutes	100 minutes	

THREE ROUTES COMPARED Buccal, IV, Oral

Modality	Buccal	IV	Oral	
	Midazolam	Midazolam	Midazolam	
Overall Behaviour	No disruptive	No disruptive	1 became	2 became
	behaviour	behaviour	disruptive	disruptive
Technique again	66%	80%	74%	59%
Preference	29%	51%	54%	36%

THREE 'Midazolam' ROUTES COMPARED Buccal, IV, Oral

- All midazolam routes appear to have minimal effect on the patient's vital signs indicating good safety profiles
- The IV route produces the fastest onset of sedation and therefore may be the most efficient
- There were more withdrawals where the buccal route was used owing to the difficulty with the taste
- The buccal midazolam was the least preferred route
- BUT- these studies also confirmed the efficacy of nitrous oxide IS- this provided the fastest onset of sedation and

Inhalation Conscious Sedation

Nitrous oxide IHS

- Mean age 6 11 years
- successful in mild to moderate anxiety
- Successful
 - best with ortho extractions
- Failure related to:
 - young age
 - multiple extractions
 - irregular attendance

Blain & Hill. Br Dent J. (1998) 184(12):608-11. Veerkamp et al. *J Dent Child* (1993) **60**:175-182. Arch et al. Int J Paed Dent (2001) 11: 41-48 Naudi et al. Eur Archives Paed Dent (2006) *Major et al.* (1981) BDJ; 151:186-191. Nathan et al. (1988) JDent.Child; 55:220-230.

Inhalation Sedation (IHS)

Physical properties

- sweet odour, pleasant to inhale, non-irritant
- liquid in cylinders, pressure constant (650-800lbs/ in²) until all the liquid evaporates
- low tissue solubility so rapid onset & fast recovery

• (MAC value) in excess of one atmosphere so GA without hypoxia is impossible

 mild analgesic hence Relative Analgesia (RA) BUT LA still required

Inhalation Sedation

Indications

• ASA I:

 no organic, physiologic, biochemical, or psychiatric disturbance.

Inhalation Sedation

Contraindications

- common cold
- tonsillitis
- nasal blockage
- neuromuscular disease e.g. myesthenia gravis, multiple sclerosis

Problems

 tinnitis, headache, paraesthesia/ tingling, fear of the 'mask'

Inhalation sedation method

Inhalation Sedation: method

 10% to 30% concentrations of nitrous oxide are most common

i.e. Nitrous oxide : Oxygen 30% : 70%

- titrated in 5% increments each 3-5 minutes
- monitor child's response and maintain dialogue and hypnotic suggestion
- allow at least 3 minutes pure oxygen recovery time

flow

titrate dose

Inhalation Sedation

Treatment Planning

- most successful when incorporated in a treatment plan from the beginning
- introduce gradually using behavioural management tools e.g. Tell Show Do
- not a panacea i.e. unlikely to be successful if used as a 'last ditch' attempt

Toxicity of nitrous oxide to dentists and their assistants

- liver disease
- miscarriage
- bone marrow suppression
- addiction
- carcinoma
- birth defects

Control of occupational exposure to nitrous oxide in the dental surgery

use :

- a properly maintained gas delivery system
- a scavenging nosepiece
- vented suction (scavenging) machine
- minimise speech by the patient
- rubber dam
- fans to sweep air away from the operator

without these the air in the surgery can contain

between 500-6700ppm

Whitcher at al. 1977, JADA vol. 95 page 763

Active scavenging

Scavenging nose piece and delivery system

fan

Paediatric dental sedation

- intertwined with behavioural management
- part of prevention and life-long rehabilitation
- integrated into a treatment plan
- facilitates quality restorative care
- NOT a 'quick fix'

So what would you do?

